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Abstract

Genome-wide association studies (GWASs) have identified regions associated with chronic obstructive pulmonary disease (COPD). GWASs
of other diseases have shown an approximately 10-fold overrepresentation of nhonsynonymous variants, despite limited exonic coverage on
genotyping arrays. We hypothesized that a large-scale analysis of coding variants could discover novel genetic associations with COPD,
including rare variants with large effect sizes. We performed a meta-analysis of exome arrays from 218,399 controls and 33,851 moderate-
to-severe COPD cases. All exome-wide significant associations were present in regions previously identified by GWAS. We did not identify
any novel rare coding variants with large effect sizes. Within GWAS regions on chromosomes 5q, 6p, and 15¢, four coding variants were
conditionally significant (P < 0.00015) when adjusting for lead GWAS single-nucleotide polymorphisms A common gasdermin B (GSDMB)
splice variant (rs11078928) previously associated with a decreased risk for asthma was nominally associated with a decreased risk for
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Q) SYSTEMATIC ANALYSIS OF EXONIC VARIANTS IN COPD

COPD [minor allele frequency (MAF)=0.46, P = 1.8e-4]. Two stop variants in coiled-coil a-helical rod protein 1 (CCHCRY), a gene involved in
regulating cell proliferation, were associated with COPD (both P < 0.0001). The SERPINAT Z allele was associated with a random-effects
odds ratio of 1.43 for COPD (95% confidence interval = 117-1.74), though with marked heterogeneity across studies. Overall, COPD-associ-
ated exonic variants were identified in genes involved in DNA methylation, cell-matrix interactions, cell proliferation, and cell death. In con-
clusion, we performed the largest exome array meta-analysis of COPD to date and identified potential functional coding variants. Future
studies are needed to identify rarer variants and further define the role of coding variants in COPD pathogenesis.

chronic obstructive pulmonary disease; exome; exon; functional; genomics

INTRODUCTION

Chronic obstructive pulmonary disease (COPD) is charac-
terized by irreversible airflow limitation (1) and is one of the
leading causes of morbidity and mortality worldwide (2).
Genome-wide association studies (GWASs) have lent consid-
erable insight into the genetic risk to COPD (3-7). Most GWAS
variants are noncoding and are thought to affect COPD sus-
ceptibility through gene regulation (8). As such, identifying
disease-causing variants in COPD GWAS regions remains
challenging. Whereas coding regions make up only ~1% of
the genome, ~10% of GWAS signals in complex diseases are
attributable to nonsynonymous variants (8). Specific rare cod-
ing variants may confer a particularly high risk for complex
diseases such as COPD. For example, o-1 antitrypsin defi-
ciency (AATD) is associated with an ~15-fold increased odds
for emphysema (9) and is most commonly caused by homo-
zygosity for the Serpin Family A Member 1 (SERPINAI) Z al-
lele (rs28929474), which is a missense variant found in ~2%-
3% of the United States population (10). Exome sequencing
of a French-Canadian family with early-onset emphysema
identified a rare nonsynonymous causal variant in protein
tyrosine phosphatase nonreceptor type 6 (PTPN6) (11).
Germline mutations in telomerase genes have been observed
in severe COPD cases (12). Thus, examining coding variants
across the genome may identify important functional (pro-
tein-altering) variants associated with COPD.

Exome arrays were designed to allow genotyping of a large
fraction of functional (nonsynonymous, splice, stop-gain)
variants across the genome (13), and association analyses
have been reported for COPD and lung function (14-16).
However, several important questions regarding the utility
of exome array studies in COPD remain unanswered. It is not
known whether increasing sample size and power will iden-
tify novel rare coding variants that markedly increase COPD
risk. There have since been several large-scale GWASs for
lung function and COPD, yet GWASs have poor coverage of
exonic variants and are not intended to identify rare coding
variants; exome array results have not been directly com-
pared with GWAS results, which may elucidate the func-
tional variants being tagged by GWAS-identified single-
nucleotide polymorphisms (SNPs). Although the SERPINA1
Z allele (rs28929474) is a known risk factor for COPD—even
in heterozygous individuals (17)—the largest GWASs to date
(3, 4, 6, 7) did not identify an association of the SERPINA1 Z
allele with COPD or lung function; one reason for this result
may be the smoking-dependent effects of the Z allele and/or
imputation inaccuracies, as the Z allele is not present on
most genotyping arrays. However, the Z allele is present
on exome arrays, allowing for direct assessment of the
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association of the Z allele with COPD risk. Further, many
COPD case-control studies intentionally exclude ZZ individ-
uals, which could introduce selection bias. A gene-by-envi-
ronment interaction of cigarette smoking may be important
for SERPINAI variants to contribute to COPD (18), which
may affect the association of the Z allele on COPD in popula-
tion-based cohorts (as opposed to COPD cohorts enriched for
cigarette smoking).

We hypothesized that a larger exome array meta-analysis
would provide increased power to detect rare and poorly
imputed functional exonic variants associated with COPD and
to identify the most likely causal variants in previously defined
COPD GWAS regions. We also leveraged the exome array data
to assess effect size heterogeneity of the Z allele across studies.

METHODS
Study Cohorts

We included 12 cohorts in our analysis: ARIC (Atherosclerosis
Risk in Communities) study with African ancestry (Aa)
and European ancestry (Ea) participants (19); CHS (Cardio-
vascular Health Study) including Ea and Aa participants
(20); COPDGene (Genetic Epidemiology of COPD) with
non-Hispanic White (NHW) and African American (AA) par-
ticipants (21); EOCOPD/ICGN [Boston Early-Onset COPD (22,
23) and International COPD Genetics Network (24)] studies;
the FHS (Framingham Heart Study) (25-27); HABC (Health,
Aging, and Body Composition) study with Ea and Aa partici-
pants (28); KARE (Korean Association Resource) study (29);
MESA (Multi-Ethnic Study of Atherosclerosis) including non-
Hispanic African American, Chinese American, Hispanic, and
non-Hispanic White subpopulations (30, 31); RS (Rotterdam
Study) (32, 33); TCGS (Transcontinental COPD Genetics
Study) from Poland and South Korea (34); UK COPD
Exome Chip Consortium (UKECC) (16); and UK Biobank
(35). Moderate-to-severe COPD was primarily defined by
prebronchodilator forced expiratory volume in 1 s (FEV,)/
forced vital capacity (FVC) ratio < 0.7 and FEV; < 80% pre-
dicted; postbronchodilator measures were only performed
in a minority of studies and were used when available.
Individual study details, including genotyping methods, are
available in the Supplemental Materials.

Statistical Analyses

Genetic association analysis was performed for case-con-
trol moderate-to-severe COPD status using an additive
genetic model adjusted for age, sex, cigarette smoking pack-
years, and principal components of genetic ancestry. In the
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family-based studies, including FHS and EOCOPD/ICGN, we
utilized logistic regression with generalized estimating equa-
tions to adjust for familial clustering. Quality control on
summary statistics from all cohorts was performed with
EasyQC (36) to ensure common variant names and reference
strand across cohorts and minor allele count (MAC)>10
within each cohort. In addition to these exome array results,
we also included the subset of matching variants (MAC > 4)
in a case-control association analysis of UK Biobank (4);
models were adjusted for age, sex, pack-years of smoking,
ever smoking (when available), and principal components of
genetic ancestry.

Power calculations were performed using the genome
association study (GAS) calculator available at http://csg.
sph.umich.edu/abecasis/cats/gas_power_calculator/index.
html (37), based on a COPD prevalence of 0.10 (38, 39). To
account for relatedness among individuals, total effective
sample size was calculated as previously described (40) and
used in power calculations to approximate the number of in-
dependent individuals represented by our sample. The total
effective sample size was 53,117.

We performed an inverse-variance fixed-effects meta-anal-
ysis of exome array results with METAL (41) and limited our
analysis to putative functional (nonsynonymous, stop, and
splice) variants, which were annotated using wWANNOVAR
(42). Variants were considered for analysis if they were pres-
ent in the UK Biobank and at least half of the other cohorts.
Exome-wide significance was determined using Bonferroni
adjustment (P < 0.05/20,536 variants < 2.4e-6). Replication of
signals from previously reported exome array studies (14-16)
was defined as a consistent direction of effect and exome-
wide statistical significance. Plink v1.9 (43) clump was used to
choose a single “index” variant from all variants with R*>0.2
in each significantly associated genetic locus. We also per-
formed a targeted analysis of splice and stop variants, consid-
ering P values below a Bonferroni-adjusted threshold (P <
0.05/number-of-stop/splice-variants < 0.05/257 < 0.00019) to
be nominally significant. We examined the relative associa-
tion of exome-wide significant COPD variants with the
spirometric parameters FEV; and FEV,/FVC in the GWAS
results from Shrine et al. (3). As genetic effects may vary
with age, we examined whether age modifies the effect of
exome-wide significant variants in the UK Biobank. In
addition, we evaluated the association of alleles with age
of COPD diagnosis in the COPDGene study. To examine
the differential effects of associated variants based on
smoking exposure, we performed stratified analyses in
ever versus never smokers and heavy (>20 pack-years)
versus light (< 20 pack-years) smokers in UK Biobank and
compared effect sizes between strata.

To determine whether the exome signals were novel, or
accounted for by previously described associations, index
exonic variants from each locus were compared with prior
COPD and lung function GWAS results (3, 4, 6, 7, 26) and
were considered distinctly associated if outside of a 2-Mb
window. For SNPs within this 2-Mb window, we assessed
linkage disequilibrium (LD) between exonic variants and
prior GWAS variants by calculating an R? value using a refer-
ence panel of 10,000 randomly selected UK Biobank partici-
pants (4). To determine if exonic SNPs were distinct from
previously described lead GWAS variants, we used results
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from GCTA-conditional and joint (COJO) analyses (44) from
a prior GWAS, as exome arrays do not assay genome-wide
variants (4). Being previously performed, this conditional
and joint (COJO) analysis was necessarily limited to variants
and cohorts present in the prior GWAS (i.e., all cohorts in the
current analysis except HABC and UK COPD Exome Chip
Consortium). We calculated a conditionally significant P
value threshold by performing a Bonferroni correction for
the total number of functional exonic variants genotyped
within 2Mb of the index GWAS variants in which exome-
wide significant variants were found [0.05/340 variants
(across all regions) =0.000147].

To examine whether exonic SNPs explained the lead sig-
nal at previously reported GWAS loci, we examined whether
the exonic variant was present within the 99% credible sets
from a recent COPD GWAS (4), obtained using the method of
Wakefield et al. (45). We also evaluated predicted functio-
nal consequences of amino acid mutations using PolyPhen
2.0 and scaled CADD (Combined Annotation-Dependent
Depletion) scores (46, 47). Briefly, CADD scores are based on
a support vector machine model predicting the relative dele-
teriousness of a mutation within a data set; scaling these
scores on a rank order magnitude scale allows for external
comparisons. For example, a scaled CADD score of 10 means
the mutation is in the top 10% of deleterious mutations, a
scaled CADD score of 20 means the mutation is in the top 1%
of deleterious mutation, and so forth (46, 47). To gain insight
into potential biological pathways affected by exonic var-
iants, we also queried gene names at genetics.opentargets.
org, which reports relevant biological pathways based on the
Reactome Database of Pathways (48, 49).

We performed expression quantitative trait locus (eQTL)
lookups for COPD-associated exonic variants, extracting
eQTL-regulated genes (eGenes) with Peqrr, < 1e-8 from prior
publications and publicly available data. We queried four
previously published eQTL data sources, including GTEx
(www.gtexportal.org) (50, 51) analysis release V6, cis- and
trans-eQTLs from Westra et al. (52), lung tissue eQTLs from
the Hao et al. (53) study of asthma, and cis- and trans-eQTLs
from the Vosa et al. (54) study in the eQTLGen Consortium.
For all eQTL sources, a false discovery rate (FDR) of < 0.05
was considered a statistically significant eQTL association.
Due to sparsity inherent to exome array association analyses,
colocalization with eQTLs could not be performed.
Therefore, for each COPD-associated exonic variant that was
an eQTL for an eGene, we calculated R? values between the
COPD-associated eQTL and the eGene’s sentinel eQTL SNP
using the UK Biobank as an LD reference panel, considering
an R? > 0.2 to be indicative of a shared causal variant in the
eQTL and exome array analyses. Sentinel eQTL SNPs for
each eGene were defined as the eQTL SNP with the lowest P
value. Protein QTL (pQTL) analyses were performed by
querying SNP-regulated proteins from Sun et al. (56) and
considering P values less than a Bonferroni-corrected thresh-
old (0.05/128,037 SNP-protein pairs=3.9e-7) to be statisti-
cally significant.

We also examined the association of the nonsynonymous
SERPINA1 Z allele (1rs28929474), the most common cause of
o-1 antitrypsin deficiency, with COPD in our study. For the Z
allele, we examined the impact of including Z allele homozy-
gotes in a study. For COPD-associated functional exonic
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variants and the Z allele, we constructed forest plots using
the meta R package (57). To examine heterogeneity across
studies, we performed meta-regression (57) of COPD-associ-
ated variant effect sizes across studies, evaluating the contri-
bution of age, FEV% predicted, pack-years of smoking, and
whether studies excluded ZZ homozygotes (for the Z allele)
to individual variant effect sizes.

RESULTS

Characteristics of Cohorts

Characteristics of study participants in each cohort are shown
in Table 1. In total, there were 218,399 controls and 33,851 moder-
ate-to-severe COPD cases, which provided 99% power to detect
variants with an MAF of 0.01 and an odds ratio of 1.3.
(Supplemental Table S1; all Supplemental material is available at
https://doi.org/10.6084/m9.figshare.14538222.v1). The cohorts
were diverse with respect to case ascertainment, sex distribu-
tion, cigarette smoking history, and ancestry. For example,
COPDGene, BEOCOPD, ICGN, TCGS (Korea and Poland), and
the UK COPD Exome Chip Consortium were COPD case-control
studies, and thus, the participants were enriched for COPD
cases, ever-smoking status, pack-years of smoking, and lower
FEV% predicted compared with individuals in the population-
based cohorts. TCGS-Korea had the highest percentage of males
(>95%) in both case and control participants, whereas the lowest
proportion of males was observed among cases in BEOCOPD
(39.9%) and controls (27.6%) in CHS Aa. Among COPD cases,
there was a predominance of males, with 14 cohorts reporting
over 55% of cases to be male. With respect to genetic ancestry,
there were 7,493 African (including African Americans), 236,312
European, 7,771 East Asian, and 674 Hispanic participants. Not

Table 1. Characteristics of cohorts in meta-analysis

surprisingly, with this sample size and the different cohort char-
acteristics, all of the ANOVA or chi-squared P values across stud-
ies were significant (P < 1x10-3).

Exome Chip Meta-Analysis

An overview of the study design is shown in Fig. 1. Exome
arrays containing 109,036 nonsynonymous, stop, and splice
variants from International COPD Genetics Consortium (ICGC)
(n = 51,458) and UK Biobank (n = 200,792) were meta-analyzed;
20,536 variants were reported in UK Biobank and > 50% of the
other studies. The distribution of variant allele frequencies is
shown in Supplemental Fig. S1. Of these, 80 variants reached
exome-wide Bonferroni-adjusted level of significance (P <
2.4e-6) (Fig. 2 and Supplemental Table S2). After clumping,
these 80 variants were represented by 35 lead variants. All 35
lead variants were within 2 Mb of previously reported GWAS
SNPs (Table 2). Eight of these variants met the criteria (see
METHODS) for replication of exonic signals from prior exome
array and genome-wide studies (Supplemental Table S3).
Twenty-one exonic variants were in low LD (R? < 0.2) with
nearby GWAS variants.

Of the 35 exome-wide significant lead variants, we identified
four novel conditionally significant exonic SNPs (Table 3),
meaning that these SNPs were within 2 Mb of COPD GWAS var-
iants, though retained regional significance after conditioning
on the lead COPD GWAS SNP using GCTA-COJO (Bonferroni
P value=0.05/340 variants=0.000147; see MATERIALS AND
METHODS). Seven of the 35 exonic variants were index var-
iants, so conditional and joint analyses were not performed
for these variants (rs721917, rs28929474, rs12373142, rs11205303,
152571445, rs1800888, and rs1334576) (4). The rs2454206 variant
in tet methylcytosine dioxygenase 2 (TET2) was significant

n Age in Years, Mean + SD Males, % Pack Years of Smoking, Mean = SD FEV, (% Predicted)
Cohort Cases Controls Cases Controls Cases Controls Cases Controls Cases Controls

ARIC AA 289 2,765 55.7 (5.84) 53.06 (5.73) 52.6 34.43 28.23 (29.4) 9.18 (16) 63.2 (13) 100.3 (12.5)
ARIC EA 1,284 7,405 56.33(5.37) 53.73(5.64) 56.15 44.09 37.73 (25.9) 11.83 (17.9) 65.5 (12.4) 100.7 (1)
BEOCOPD 366 560 50.8 (8.2) 39.3(12.2) 39.9 41.6 37.5(16.5) 1.66 (14.2) 29.2 (22.6) 94.5(8.5)
CHS AA 107 232 72.25(4.91) 72.76(5.25) 495 27.6 29.36 (24.4) 20.89 (20.4) 61.38 (13.4) 102.6 (15)
CHS EA 914 1,690 73.51(5.72) 71.87(5.11) 60.2 323 44,59 (28.9) 25.77 (23.7) 59. 97 (15.6) 99.49 (13.6)
COPDGene AA 796 1,715 58.2 (6.6) 51.8 (3.8) 55.5 58.1 37.8 (13.8) 32.7 (M) 4 (13.1) 96.6 (9.4)
COPDGene NHW 2,777 2,507 65.2 (5.8) 59.3(6.6) 55.7 49.4 49.8 (20.7) 35(12) 0 (15.5) 95.5 (8.5)
FHS 625 4,959 61.96 (12.1) 51.63(13.2) 51.04 4469 37.22 (24.2) 15.47 (16.9) 66 4(M) 102 (12)
HABC AA 126 817 73.3(2.84) 73.43(2.91) 6746 4259 38.99 (24.8) 27.34 (23.5) 59.83 (13.6) 101.6 (20.5)
HABC EA 213 1,259 73.53(2.74) 73.75(2.85) 56.34 529 49.71(34.7) 33.36 (30.5) 62.79 (12.7) 97.7 (15.7)
ICGN 1,769 696 59.4 (4.2) 54.9 (5.8) 58.6 48.3 45 (19.5) 25.1(13.7) 39.2 (13.5) 97.5 (10.5)
KARE 106 6,862 57.39(8.14) 51.49(8.64) 78.3 45.07 23.67 (25) 8.124 (14.7) 70.5 (8.6) 113.8 (16.3)
MESA Black 95 551 67.5(8.95) 64.39(9.39) 67.4 414 35 (25.5) 18.8 (17.8) 64.1(13.9) 102.6 (14.4)
MESA Chinese 32 403 69.56 (9.09) 64.03(9.34) 531 47.9 31.88 (21) 20.74 (18) 65.7 (13.4) 104.3 (14)
MESA Hispanic 61 613 67.74(9.48) 62.82(9.54) 63.9 43.2 33.73(31.5) 15.82 (18) 65.3 (12.9) 100 (12.2)
MESA White 180 824 68.42(8.87) 64.38(9.61) 511 47 42.42 (33.2) 23.01(22.7) 66.2 (12.1) 98.9 (11.7)
RS 60 415 80 1(5.3) 79 6 (4.9) 70 52 30.3(23.8) 14.3 (20.3) 66.5 (11.1) 111.6 (18.1)
TCGS Korea 149 219 9 (5) 3 (6) 99.3 96.8 40 (12) 25.5(8.5) 33.2 (6.9) 93.6 (6.4)
TCGS Poland 304 307 62 2 (5.5) 58 3(4.6) 7041 67.4 40.3 (12.6) 32.3(8.9) 28.7 (6.7) 102 (9)
UK Biobank 21,081 179,711 59.4 (7.3) 55.7 (8) 52 58 19.7 (23.9) 6.1(12.5) 65.1(11.8) 98.3 (11.4)
UK COPD Exome

Chip Consortium 2,517 3,889 66.1(7.74) 49 (6.08) 55.24 56.08 41.2 (24.4) 22.05 (15.6) 51.93 (10) 99.25 (10)

In total, there were 218,399 controls and 33,851 moderate-to-severe COPD cases. Aa, African ancestry; ARIC, Atherosclerosis Risk in
Communities; CHS, Cardiovascular Health Study; COPD, chronic obstructive pulmonary disease; EOCOPD/ICGN, Early-Onset COPD
study and International COPD Genetics Network; Ea, European ancestry; FHS, Framingham Heart Study; HABC, Health, Aging, and
Body Composition; KARE, Korean Association Resource; MESA, Multi-Ethnic Study of Atherosclerosis; NHW, non-Hispanic White; RS,
Rotterdam Study; TCGS, Transcontinental COPD Genetics Study; UKECC, UK COPD Exome Chip Consortium.
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Number of Variants
Exome Arrays in 218,339 controls and 109.036
(nonsynonymous,
33,851 cases <15, Splico)
Variants Reported in UK Biobank and 20,536
> 50% of ICGC cohorts
Select top COPD-associated exonic
variants at each locus and compare to 35
prior GWAS variants -
Exonic variants significant after 4
conditioning on GWAS variant -

Figure 1. Overview of study design. COPD, chronic obstructive pulmonary
disease; GWAS, genome-wide association studies.

after conditioning on the rs34712979 index variant, though this
variant exists at a locus with two additional independent var-
iants (rs2047409 and rs10516528) (5). We observed that the
exonic rs2454206 variant association was no longer significant
after conditioning on rs2047409 (P = 0.24). In stepwise joint
modeling considering these four TETZ2 locus variants, only
152454206 and rs34712979 were selected for the final model.
We also evaluated the 35 exome-wide significant lead var-
iants in the 99% credible sets for the COPD GWAS loci from
Sakornsakolpat et al. (4) (Table 4); 18 lead exonic variants
were present in the 99% credible sets. Three variants had a

posterior probability of association (PPA) >10%, and 10 var-
iants were in the top 20% of their respective credible sets
(Supplemental Fig. S2), suggesting these are more likely to
be causal variants. Only rs1334576 in ras responsive element
binding protein 1 (RREBI) had a PPA >10%, ranked within
the top 20% of its credible set, and was predicted to be dam-
aging by PolyPhen and CADD. The remaining 17 top exonic
variants (Supplemental Table S4) were not present in their
respective 99% credible set.

We also analyzed 257 stop or splice variants, of which two
stop variants (rs3130453 and rs72856718) and one splice vari-
ant (rs11078928) reached Bonferroni-adjusted significance
(P < 0.00019; see METHODS) (Supplemental Table S5). The
stop variant rs3130453 (MAF = 0.49) in the coiled-coil a-heli-
cal rod protein 1 (CCHCRI) gene was associated with an odds
ratio of 1.04 [95% confidence interval (CI) = 1.02-1.06, P =
1.3e-5] for COPD. The rs72856718 stop variant (MAF =
0.09), also in the CCHCRI1 gene, was associated with an
odds ratio of 1.08 (95% CI = 1.04-1.13, P = 8.8e-5) for
COPD. The splice variant, leading to an exon 6 deletion
in gasdermin B (GSDMB), had an odds ratio of 1.04 (95%
CI = 1.02-1.06, P = 1.8e-4) in association with COPD.
Forest plots for all exome-wide significant, stop, and
splice variants are shown in Supplemental Fig. S3.
Reactome pathways for the genes associated with condi-
tionally significant, stop, and splice variants are shown in
Supplemental Table S6. Twelve exonic variants (including
stop/splice variants), many of which were highly correlated
with each other (Fig. 3), are located within the complex
human leukocyte antigen (HLA) region (hgl9; chromosome
6:28477797-33448354).
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Figure 2. Manhattan plot of exome array variants. The horizontal red line indicates an exome-wide significance level of 2.4e-6. The exonic variants

reaching exome-wide significance are annotated.
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Q) SYSTEMATIC ANALYSIS OF EXONIC VARIANTS IN COPD

Table 3. Conditionally significant exome array SNPs (P < 0.000147) within 2 Mb of GWAS SNPs identified in UK
Biobank (4)

GWAS Index Exonic Variant
Chr SNP Exonic SNP Gene Name Risk Allele Frequency B SE P b (Conditional) SE (Conditional) P (Conditional)
5 rs10866659 rs2287749 ADAM19 0.9 —0.089 0.014 1.00E-09 —0.057 0.014 4.30E-05
6 rs2284174 rs13195509  BTN2A1 0.069 0.12 0.015 7.80E-15 0.056 0.014 3.40E-05
15 rs10152300 rs17361375 C150rf40 0.81 —0.058 0.012 1.60E-06 —0.051 0.012 2.20E-05
15 rs10152300 rs4842860 C150rf40 0.65 0.043 0.0099 1.60E-05 0.04 0.0099 5.20E-05

Exonic variant effects were adjusted for the index SNPs indicated in the table. Chromosome positions based on build hgl19. Note that
the rs2454206 variant in TET2 was significant after conditioning on the rs34712979 index variant, though this variant exists at a locus
with two additional independent variants (rs2047409 and rs10516528) (5). We observed that the exonic rs2454206 variant was no longer
significant after conditioning on rs2047409 (P = 0.24). Note that HLA imputation was not performed, so HLA region variants were not
included in conditional and joint analyses. GWAS, genome-wide association study; HLA, human leukocyte antigen; SNPs, single-nucleo-

tide polymorphisms.

Similar associations of variants in Table 2 were observed
in a prior GWAS of FEV; and FEV,/FVC, except that three var-
iants (rs3885951, rs11078928, and rs28929474) did not reach
our level of exome-wide significance for either GWAS
phenotype (Supplemental Table S7). We also assessed for
interactions of exome-wide significant variants in Table 2
with age in UK Biobank and found no significant interac-
tions (all P > 0.05). Furthermore, we evaluated whether
each of these variants was associated with earlier age of
COPD diagnosis in the COPDGene cohort and observed
that the smoking behavior-associated rs16969968 SNP in
CHRNAS was associated with earlier age of COPD diagno-
sis (P = 0.001; Supplemental Fig. S4). Comparing ever with
never smokers and heavy with light smokers, the effect
sizes are generally similar between strata (Supplemental
Fig. S5). The exceptions include rs1422795, rs2571446, and
rs3829947 in ever versus never smokers and rs1422795 in
heavy versus light smokers.

eQTL and pQTL analyses.

The correlations between the 35 lead exonic variants
and sentinel eQTL SNPs (i.e., the eQTL SNP with the
lowest P value of all eQTL SNPs assigned to an eGene)
in which the LD R? is>0.2 are shown in Table 5,
and the full set of eQTL-regulated SNPs are shown in
Supplemental Table S8. Several exonic variants are
associated with eQTL SNPs that regulate the same gene
within lung tissue, including FBX038, ADGRGS6,
RREBI1, C150rf40, and EFCABS. In pQTL analyses (56),
12 exonic variants were significantly associated with
protein expression (Table 6).

SERPINA1 Z allele effects.

The SERPINA1 Z allele rs28929474 was associated with a
1.18 odds ratio for COPD in the fixed-effects analysis (95%
CI=1.10-1.26, P = 1.74e-6) (Supplemental Table S5). In the

Table 4. Exome array variants identified in 99% credible sets derived from UK Biobank (4) using the method by
Wakefield et al. (45) and wANNOVAR functional annotations

Gene GWAS Index SNP Polyphen Rank  Amino Acid

Chr  Exonic SNP Name for Fine-Mapping* PPA Rank Percentile Polyphen Prediction Score Change Scaled CADD
2 rs2571445 TNS1 218683154:A:G 0.58 1 100 Benign 0.013 WMN97R 5.551
4 rs11938093  BTC 75673363:G:A 0.032 4 93 Probably damaging 0.739 L124M 24.4
5 rs10043775  FBXO38 148059519:G:A 0.00031 356 91 Benign 0.013 S592pP 12.25
5 rs10043775  FBXO38 148203236:T:C 4.70E-05 an 84 Benign 0.013 S592P 12.25
5 rs10043775  FBXO38 148611623:C:A 7.60E-05 368 85 Benign 0.013 S592P 12.25
5 rs2287749  ADAMI19 156948318:T:G 0.023 6 100 Possibly damaging 0.494 G660D 243
5 rs1422795 ADAM19 156937043:A:G 0.049 9 60 Benign 0.391 $284G 14.33
5 rs11740603 Cborf52 156948318:T:G 1.00E-05 3708 6.2 Possibly damaging 0.451 R45L 24.2
5 rs11740603  Cb5orf52 157002695:C:T 1.20E-05 mo 59 Possibly damaging 0.451 R45L 24.2
6 rs1334576 RREB1 7211818:G:A 0.14 1 100 Possibly damaging 0.594 G195R 12.63
6 rs17280293  ADGRG6 142814991:.C:T 0.024 5 0 Possibly damaging 0.493 $123G 24.7
10 rs721917 SFTPD 81706324:A:G 0.23 1 100 Benign 0.013 M31T 0.003
12 rs11049488  CCDC91 28320536:T:A 0.0022 93 81 Benign 0.08 A36T 1.08
14 rs3829947  RIN3 92600798:G:T 5.20E-05 421 86 Benign 0.04 H215R 3.995
15 rs3885951 HYKK 78388464.C.T 6.60E-05 189 67 Benign 0.104 K343E 18.98
15 rs3885951 HYKK 78923845:T:G 1.80E-05 944 66 Benign 0.104 K343E 18.98
15 rs16969968  CHRNAS 78898932:C:G 0.016 10 83 Benign 0.145 D398N 15.07
15 rs4842860  Ci50rf40 83693513:T:C 0.00088 70 78 Benign 0.013 C25R 0.029
15 rs17361375  C150rf40 83693513:T:C 0.00021 149 53 Benign 0.093 L1F 6.178
15 rs4842838  ADAMTSL3  84515943:.C:G 3.30E-05 277 26 Benign 0.013 V661L 12.87
17 rs9897794  EFCAB5 28413129:T:C 0.0039 73 79 Benign 0.013 L237v 12.25
17 rs12373142  SPPL2C 43924200:C:G 0.03 1 100 Benign 0.139 P643R 0.117

PolyPhen and CADD were used to predict consequences of mutation. CADD scores are based on a support vector machine model predicting the relative

deleteriousness of a mutation within a dataset; scaling these scores on a rank order magnitude scale allows for external comparisons. For example, a scaled
CADD score of 10 means the mutation is in the top 10% of deleterious mutations, a scaled CADD score of 20 means the mutation is in the top 1% of deleteri-
ous mutation, and so forth (46, 47). Chromosome positions based on hg19. Percentile indicates the ranking of the exonic variant within the credible set of
the GWAS index SNP. CADD, combined annotation dependent depletion; GWAS, genome-wide association study; PPA, posterior probability of association.
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Figure 3. LD matrix (R%) of exome array variants within the

HLA region (hg19; 6:28477797-33448354). HLA, human leu-
kocyte antigen; LD, linkage disequilibrium.
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Z allele meta-analysis, there is evidence of heterogeneity observed Z allele effect size heterogeneity, we performed
(2 = 0.6), and the African Americans from the ARIC a random-effects meta-analysis, and the rs28929474 vari-
cohort exhibited an opposite direction of effect, which ant demonstrated association with a 1.43 odds ratio for
was not statistically significant (Fig. 4). Given the COPD (95% CI=1.17-1.74, P=0.0043).

Table 5. Exon SNPs and sentinel eQTL SNPs with R2 > 0.2 and P value (eQTL) < 1e-8

Chr Exonic SNP Gene Name eQTL rs No. eQTL-Regulated Gene Direction of Effect P Value R? Source

5 rs10043775  FBXO38 rs6876982 FBXO38 + 2.00E-20 0.7 Hao et al. (53); lung cis-eQTL

6 rs11155242 ADGRG6 rs11155242 ADGRG6 — 5.20E-136 1 Vosa et al. (54); cis-eQTL

6 rs13195509 BTN2A1 rs35304979 BTN3A2 + 3.10E-82 0.84 GTeXlung
rs3117425 BTN3A2 — 3.80E-45 0.59 Hao et al. (53); lung trans-eQTL
rs149959 ZNF165 + 2.00E-09 0.27 Hao etal. (53); lung cis-eQTL

6 rs61742093  OR2B2 rs3117425 BTN3A2 — 3.80E-45 0.79 Hao et al. (53); lung trans-eQTL
rs35304979 BTN3A2 + 3.10E-82 0.62 GTeXlung
rs149959 ZNF165 + 2.00E-09 0.32 Hao etal. (53); lung cis-eQTL

6 rs2232423 ZSCAN12 rs3117425 BTN3A2 — 3.80E-45 0.85 Hao etal. (53); lung trans-eQTL
rs35304979 BTN3A2 + 3.10E-82 0.58 GTeXlung
rs149959 ZNF165 + 2.00E-09 0.31 Hao et al. (53); lung cis-eQTL

6 rs3749971* OR12D3 rs3117425 BTN3A2 - 3.80E-45 0.92 Hao et al. (53); lung trans-eQTL
rs35304979 BTN3A2 + 3.10E-82 0.5 GTeX lung
rs149959 ZNF165 + 2.00E-09 0.26 Hao et al. (53); lung cis-eQTL

6 rs2523989*  TRIM31 rs3117425 BTN3A2 — 3.80E-45 0.54 Hao et al. (53); lung trans-eQTL
rs35304979 BTN3A2 + 3.10E-82 0.28 GTeXlung

6 rs929156* TRIM15 rs9261468 TRIM10 — 4.60E-11 0.89 Hao et al. (53); lung cis-eQTL

6 r$9262143* PPPIR18 rs3117425 BTN3A2 — 3.80E-45 0.58 Hao et al. (53); lung trans-eQTL
rs35304979 BTN3A2 + 3.10E-82 0.32 GTeXlung

6 rs7750641* TCF19 rs114810457 AGER + 4.20E-82 0.29 Vosa et al. (54); cis-eQTL
rs3117425 BTN3A2 - 3.80E-45 0.41 Hao et al. (53); lung trans-eQTL
rs35304979 BTN3A2 + 3.10E-82 0.22 GTeXlung

6 rs3101017* VWA7 rs114810457 AGER + 4.20E-82 0.37 Vosa et al. (54); cis-eQTL
rs3117425 BTN3A2 — 3.80E-45 0.34 Hao et al. (53); lung trans-eQTL

6 rs7775397* C6orf10 rs114810457 AGER + 4.20E-82 0.39  Vosa et al. (54); cis-eQTL
rs3117425 BTN3A2 - 3.80E-45 0.29 Hao et al. (53); lung trans-eQTL

6 rs1129740%* HLA-DQA1  rs9273500 HLA-DRA - 2.60E-29 0.36  Vosa et al. (54); cis-eQTL

6 rs1334576 RREB1 rs2714341 RREB1 - 1.20E-86 0.34 Vosa et al. (54); cis-eQTL

15  rs16969968 CHRNAS rs931794 PSMA4 + 5.60E-107 0.91 Vosa et al. (54); cis-eQTL
rs12591557 PSMA4 - 3.30E-20 0.37 Hao et al. (53); lung cis-eQTL

15 rs4842860 C150rf40 rs6603041 C150rf40 + 3.10E-110 0.64 Vosa et al. (53); cis-eQTL
rs6603041 C150rf40 + 9.70E-1 0.64 GTeXlung

17  rs9897794 EFCAB5 rs7501472 CORO6 + 3.00E-61 0.78  Vosa et al. (54); cis-eQTL
rs4567782 EFCAB5 + 2.30E-09 0.97 Hao et al. (53); lung cis-eQTL
rs3936006 EFCAB5 - 5.10E-74 0.93 Vosa et al. (54); cis-eQTL

*Indicates HLA region. eQTL, expression quantitative trait locus; HLA, human leukocyte antigen; SNPs, single-nucleotide polymorphisms.
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Table 6. Exonic genes associated with pQTL-regulated proteins at Bonferroni-corrected significance level

(P < 3.9e-7)
Marker Exon rs No. Exon HGNC Symbol Effect P Value pQTL-Regulated Protein
6:26463660 rs13195509 BTN2A1 0.3635 1.90E-10 MICB
6:27879982 rs61742093 OR2B2 —0.4214 1.40E-13 MICB
—0.3019 2.20E-07 PDE4D
6:28366151 rs2232423 ZSCAN12 —0.4332 2.50E-14 MICB
—0.333 8.40E-09 PDE4D
6:29342775 rs3749971 OR12D3 0.4299 1.20E-14 MICB
0.3077 6.60E-08 PDE4D
6:30078275 rs2523989 TRIM31 0.2574 3.80E-07 GRIA4
0.4292 1.80E-18 MICB
0.2725 6.80E-08 PDE4D
6:31124849 rs3130453 CCHCRI1 —-0.2171 1.60E-08 PRSS3
6:31125257 rs72856718 CCHCRI1 —0.7092 3.10E-22 CREB3L4
6:31129310 rs7750641 TCF19 0.3488 4.30E-1 C4A
0.3216 1.50E-09 CD96
0.4254 3.60E-16 GRIA4
0.5975 3.30E-32 MICB
0.4388 3.50E-17 PDE4D
6:31733466 rs3101017 VWA7 —0.4409 2.10E-15 C4A
—0.4089 2.40E-13 CD96
—0.305 8.50E-08 DEFB119
—0.5098 1.70E-20 GRIA4
—0.3301 5.70E-09 HLA-DQA2
—0.3009 1.30E-07 IL21
—0.6693 5.00E-36 MICB
—0.5366 9.90E-23 PDE4D
0.3086 5.50E-08 PRSS3
6:32151443 rs2070600 AGER 0.5749 8.40E-15 AGER
0.5391 2.90E-13 PRSS3
0.5014 1.90E-11 RACGAP1
6:32261252 rs7775397 C6orf10 —0.4155 1.70E-13 C4A
—0.3764 3.20E-1 CD96
—0.3222 1.90E-08 DEFB119
—0.4735 2.20E-17 GRIA4
—0.3798 2.10E-11 HLA-DQA2
—0.5861 1.00E-26 MICB
—0.5085 5.10E-20 PDE4D
0.315 3.90E-08 PRSS3
14:94844947 rs28929474 SERPINAT —1.1964 1.20E-21 ACP2
—0.7288 1.90E-08 DNAJB9
—1.7387 8.60E-48 MRPL33
—1.0455 1.40E-16 NCF2
—1.0295 4.40E-16 PIM1
—0.9825 1.10E-14 SNAP25
—0.7328 1.60E-08 TXNDC5
—0.7449 8.80E-09 WISP3
—1.3836 3.20E-29 ZNF175

*Indicates variant is in HLA region. pQTL, protein quantitative trait locus; HGNC, HUGO Gene Nomenclature Committee; HLA,

human leukocyte antigen; SNPs, single-nucleotide polymorphisms.

Meta-regression.

For each exome-wide significant variant, we performed
meta-regression to examine the cohort-specific effects of
FEV,% predicted and pack-years of smoking; for the Z al-
lele (rs28929474), we also examined the effects of inclu-
sion of Z allele homozygotes on the reported variant
effect sizes (Supplemental Table S9). Mean differences in
FEV% predicted from individual cohorts did not account
for the observed heterogeneity, nor did whether a study
excluded Z allele homozygotes. Heterogeneity of effect
sizes was at least partially attributable to mean differen-
ces in pack-years of smoking for several variants (rs-
12373142, rs1334576, rs16969968, rs2523989, rs3130453,
and rs7750641).

DISCUSSION

In this study, we meta-analyzed exome array data from
33,851 moderate-to-severe COPD cases and 218,399 controls.
We report four exonic variants on chromosomes 5q, 6p, and
15q, as well as two stop variants and one splice variant asso-
ciated with COPD. We also examined the association of the
SERPINA1 7 allele (rs28929474) with COPD and heterogene-
ity of effect sizes across cohorts. These results lend further
insight into the potential pathogenesis of this disease and
identify potential loci for laboratory-based validation.

Compared with prior studies, this exome array meta-anal-
ysis includes significantly more participants and extends
prior findings by providing an in-depth characterization of
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Study rs28929474 OR 95%—Cl
ARIC AA b 0.22 [0.03; 1.75]
ARIC EA 1 1.75 [1.27; 2.40]
COPDGene AA —— 3.60 [1.41; 9.19]
COPDGene NHW - 1.42 [1.06; 1.92]
CHS EA —H— 1.21 [0.68; 2.15]
EOCOPD/ICGN e 1.65 [1.12; 2.45]
FHS T— 1.33 [0.82; 2.15]
HABC EA —p— 1.11 [0.52; 2.37]
MESA White —— 1.67 [0.71; 3.89]
TCGS Poland \————  4.96 [1.48;16.57]
UKECC e 1.25 [0.83; 1.88]
UK Biobank : 1.10 [1.02; 1.19]
Fixed effect model 0 1.18 [1.10; 1.26]
Random effects model <> 1.43 [1.17; 1.74]
e

0.1 051 2 10

Figure 4. Forest plot of the SERPINAT Z allele (rs28929474). The Z allele
was associated with a 1.18 odds ratio for COPD in fixed-effects analysis
(95% CI = 1.10-1.26, P=1.74e-6) and 1.43 odds ratio for COPD in random-
effects analysis (95% Cl =1.17-1.74, P= 0.0043) (I2 =0.60). See METHODS for
cohort abbreviations. Aa, African ancestry; ARIC, Atherosclerosis Risk in
Communities; CHS, Cardiovascular Health Study; Cl = confidence interval;
COPD, chronic obstructive pulmonary disease; EOCOPD/ICGN, Early-
Onset COPD study and International COPD Genetics Network; Ea,
European ancestry; FHS, Framingham Heart Study; HABC, Health, Aging,
and Body Composition; MESA, Multi-Ethnic Study of Atherosclerosis;
NHW, non-Hispanic White; TCGS, Transcontinental COPD Genetics Study;
UKECC, UK COPD Exome Chip Consortium.

exonic variants. Using the criteria that exome-wide signifi-
cance is reached and the direction of effect and risk allele are
the same in both the current and prior studies, eight exonic
variants from prior genome-wide and exome array studies
were replicated (3, 4, 6, 7, 14-16, 58). Of these, multiple lines
of evidence suggest that rs1334576 in RREBI is likely a func-
tional variant; RREBI is a zinc-finger transcription factor
that binds to Ras-related elements in gene promoters and
has been implicated in cell differentiation (59-61). Smoking
history was associated with the CHRNAS5 variant in meta-
regression, which is not surprising given the well-established
role of this locus in smoking behavior (62). This variant was
also associated with early age of COPD diagnosis. Although
we had adequate power to detect variants with an MAF of
0.01 with an effect size of 1.3 or greater, we did not identify
any novel rare variants with large effect sizes. These data
suggest that low-frequency protein-coding variants (down to
1%) with large effect sizes do not play a substantial role in
COPD pathogenesis. However, this study was not powered to
assess the impact of very rare variants (MAF < 0.01), nor the
effects of low frequency and common protein-coding var-
iants on COPD subtypes.

Although all variants were near previously identified
COPD GWAS loci, applying a more relaxed multiple testing
threshold (63, 64) led to the identification of four independ-
ently associated exonic variants that remained significant af-
ter conditioning on the lead nearby GWAS variant. The
rs2287749 variant may be a causal variant based on condi-
tional, credible set, and PolyPhen analyses and is located
within ADAM19, a metalloproteinase (65) involved in cell-
matrix interactions and invadopodia formation in cancer
cells (49) and previously implicated in COPD risk (4, 66).
Three independent variants have been previously reported
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at the TET2 4q24 locus (5). Conditional and joint analyses
suggest that rs2047409 and rs34712979 account for the signal
observed at this locus. TET2 is involved in DNA demethyla-
tion and regulation of gene expression, and variants have
been associated with extremes of FEV; (5) and linked to age-
associated clonal hematopoiesis and self-reported COPD
and/or asthma (67). Our results further highlight the impor-
tance of TET2 in COPD risk. Two novel variants, rs4842860
and rs17361375, in C150rf40 were identified. In eQTL analy-
ses, the former SNP was correlated with eQTL SNP
rs6603041 in both lung and blood. Neither variant was found
in their respective 99% credible sets from a COPD GWAS.
This finding might indicate that these variants are not causal
or could indicate that this locus was not adequately charac-
terized by GWAS. A deeper characterization of this locus
could help clarify its role in COPD pathogenesis.

Examining only the most deleterious (stop and splice) var-
iants, we identified three nominally significant associations.
We found two stop variants in the CCHCRI gene. CCHCRI
has a role in regulating cell proliferation and differentiation,
both of which are important in the pathogenesis of emphy-
sema. The splice variant rs11078928 encodes a polymor-
phism at a splice acceptor site in gasdermin B (GSDMB) on
chromosome 17q21 (67). GSDMB is important in pyroptosis, a
type of programmed cell death that releases inflammatory
mediators. Pyroptosis is activated by caspase-mediated
cleavage of the inhibitory C-terminus of gasdermin B, releas-
ing the functional N-terminus (68-70). The rs11078928 vari-
ant leads to a deletion of exon 6 in the N-terminus,
rendering gasdermin B unable to activate pyroptosis (71).
The minor allele (C) has been associated with lower asthma
risk (71) and was associated with lower COPD risk in our
study. This finding is consistent with the notion that subpo-
pulations of individuals have features of both asthma and
COPD; indeed, childhood asthma is associated with lower
lung function and increased risk for COPD in adulthood (72,
73). Thus, GSDMB may contribute to the pathobiology of
asthma-COPD overlap.

Prior investigations into the Z allele association with
COPD have been conflicting. Many prior lung function and
COPD genetic association studies (GWASs and exome-wide)
have not reported associations with the SERPINA1 Z allele
(3-6, 14-16). Yet, the Z allele has also been associated with
severe COPD (74) and lung function (75) at genome-wide sig-
nificance in cohorts enriched for COPD and heavy smoking,
potentially with a gene-by-smoking interaction (76). We eval-
uated the effect of a directly genotyped (rather than
imputed) Z allele and applied a random-effects meta-analy-
sis. The Z allele was associated with a 1.17-1.74 odds ratio for
COPD.

We observed an asymmetric distribution of effect sizes
and standard errors for the Z allele across cohorts, suggesting
that there may be cohort-specific selection bias with regard
to the inclusion of individuals with the Z allele. The combi-
nation of the exclusion of homozygous Z allele individuals
(PiZZ) from many COPD case-control studies and the inclu-
sion of a large number of individuals with little to no smok-
ing history in population-based cohorts likely diminished
the power to detect an overall effect for the Z allele. To
explore this issue, we used meta-regression to assess the
impact of intentional exclusion of ZZ individuals, lung
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function severity, and cigarette smoke exposure on Z allele
effect size heterogeneity. None of these factors clearly
explained the observed Z allele effect size heterogeneity
across studies.

This study has several strengths and limitations. The pri-
mary strengths of this study are the large sample size and
the direct assessment of protein-coding variant associations
with COPD in the context of GWAS findings. We were not
well powered to detect variants with an MAF < 0.01, so we
are unable to assess the impact of very rare protein-coding
variants on COPD risk. Larger studies are needed to replicate
our findings and assess the impact of very rare variants.
Exome array data provide sparse coverage of variants across
the genome, making colocalization analyses between COPD
exonic variant associations and eQTLs or pQTLs impossible.
However, we attempted to address this limitation by identi-
fying eQTLs and pQTLs in the highest LD with COPD exonic
variants. Finally, we used a limited set of bioinformatic pre-
diction tools to identify functional variants, but the accuracy
of such tools for predicting biologically important changes in
protein structure and function is not clear (77). Laboratory-
based validation is critical to understanding the causal influ-
ence of the exome array variants reported here.

In conclusion, we performed the largest exome array meta-
analysis of moderate-to-severe COPD to date. We were unable
to identify any protein-altering coding variants at exome-
wide significance in regions not previously identif-ied by
GWAS. However, at previously described GWAS loci, we
report multiple coding variants associated with COPD, includ-
ing four conditionally significant nonsynonymous variants,
two stop variants, and a splice variant. These variants exist in
genes important in cell-matrix interactions, cell proliferation,
DNA demethylation, regulation of proteases, and regulation
of cell death. We further identify the heterogeneity of effects
of the SERPINAL1 Z allele across cohorts. Future studies will be
needed to replicate and validate these identified exonic
variants, identify rarer variants, and further describe the
role of coding variants in COPD pathogenesis.
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